数据挖掘中的异常检测
数据挖掘中的异常检测
一、实时分析需要关注的三大指标
数据化运营需要关注的指标非常多,如PV、UV、转化率、留存率等等。忽略留存、转化等结果型指标,在分钟级的实时监测中,运营主要关注网站平台的三大类数据指标:
访问用户量
访问来源
访问行为
用户访问量、访问来源和访问行为对网站平台的运营具有重要意义:
分钟级的访问量可以帮助我们了解流量的趋势,方便及时发现流量的异常;
访问来源的监测方便我们了解实时访问来源和权重,为渠道优化做准备;
访问行为的实时监测帮助我们了解用户的访问偏好,方便后期进行网站内容优化。现有的SaaS (软件即服务)产品中,将上述实时指标模块统一于一个后台页面中,这样的设计便于运营者对实时的情况一目了然、运筹帷幄。
二、通过三个案例讲透实时分析
从异常的流量峰值中发现问题
运营者一般都比较关注网站平台的PV、UV及其走势,这也是网站流量分析的基础指标。以天或者小时为颗粒度的流量分析较为粗糙,会掩盖很多时间节点上的流量波动细节。如果我们用分钟级的粒度来观察流量,又会有什么发现呢?某内容社区7月16日16:30-16:35用户访问量激增,是平时的4倍左右(如上图圆圈所示)。社区的运营人员马上就发现了这个异常值,借助[访问来源]发现该节点访问来源排第一位的是微信(mp.weixinbridge.com),然而当时并不知具体原因。在稍后的朋友圈分享的文章中发现,当时某运营大咖在一个微信群分享中推荐了该社区平台,贡献了16:30-16:35社区激增的访问量。该社区的PR果断抓住这次机会,邀请该运营大咖来该社区做知识分享,起到了非常好的传播效果。
这是通过激增流量发现合作渠道的典型案例,值得所有企业思考。反之,如果流量暴跌,甚至降为零,那么这个时候就马上检查网站/APP是否正常,以便及时修复问题。
精准投放:渠道优化与反作弊
作为一个运营人员,如果产品在各大渠道上投放了广告,则可以通过[访问来源]来时刻监测渠道的广告效果,进而确定渠道带来的访问用户量和质量。
某互联网企业近期做了系列的渠道投放测试。他们通过[访问来源]发现其中两个渠道带来的量非常少,而且价格不菲,于是短暂上线就立即撤掉了该投放。同时实时分析还可以用于反作弊,短时间、单一渠道流量暴增很可能就是刷单或者流量作弊的表现。某日上午该网站访问量连续出现两个异常高峰,且该期间绝大部分流量来自一个渠道。运营人员对此非常警觉,经排查是代理商作弊,用机器人刷量;事后该企业果断放弃该代理渠道。上述两个行为为该企业挽回了大量损失。
实时监测,让产品运营更加高效
现在互联网产品迭代的速度越来越快,产品运营需要对新上线的产品或者功能进行追踪,评估产品的效果或者市场反馈。互联网金融领域存在组团诈骗进件(进件,即购买金融产品)的情况。以某互联网金融公司为例,因为风险控制的原因会控制对外宣传的力度,每天的访问用户数基本比较稳定。某日,该互金公司上线了一个新的金融产品,公司的运营人员通过[访问用户实时走势]发现访问用户陡然增加,再通过[活跃网页]发现该产品中的某个页面的访问量特别高,经过排查确定这是该产品的漏洞,会导致公司流失大量资金,他们果断采取修复措施再重新上线。如果还是用传统的流量监测方法,可能等到两三天才能发现这个漏洞,到时候流失资金可能达几百万之巨。
三、数据驱动的精细化运营
一个产品或者运营手段从最初的“idea”到最后成型上线,运营人员需要通过数据来衡量它的表现及市场反馈。同时,从数据中发现问题,提出假设,不断升级迭代;从而形成“idea — product – data”的良性循环,驱动业务和客户的增长。在运营的过程中,数据反馈越及时,我们迭代的速度就越快,运营的效率就越高。1.01的365次方约等于38;换言之,通过实时分析可以实现不断的、快速的小幅迭代,而这积累起来就是运营、是企业巨大的进步。
数据挖掘(异常检测)——概述
核心内容: 一、 异常检测是做什么: 划分正常数据(预期行为数据)与非正常数据(预期行为差异数据) 二、 实现方法: 统计方法、线性模型、聚类和集成方法。 三、技术难点: 类不平衡问题、噪音干扰 四、实际可应用场景: 银行柜员虚增业务量识别、柜面客户异常行为识别(异常业务) 五:问题: 1.1 异常类别中,条件异常和群体异常,通过异常检测分出异常群体,甚至包括点异常。区分了两个群体A和B后,怎么进一步判断A、B的标签,到底哪个是异常的问题?
数据挖掘(异常检测)——线性方法
补充内容: 一、PCA实现流程,设有 m 条 n 维数据: S1. 将原始数据按列组成 n 行 m 列矩阵 X; S2. 将 X 的每一行进行零均值化,即减去这一行的均值; S3. 求出协方差矩阵 ; S4. 求出协方差矩阵的特征值及对应的特征向量; S5. 将特征向量按对应特征值大小从上到下按行排列成矩阵,取前 k 行组成矩阵 P; S6. Y=PX 即为降维到 k 维后的数据。 二、sklearn实现及参数说明 相关包 import sklearn.decomposition 常用类 import sklearn.decomposition.PCA 其中, sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False) 除了这些输入参数外,有两个PCA类的成员值得关注。第一个是explained_variance_,它代表降维后的各主成分的方差值。方差值越大,则说明越是重要的主成分。第二个是explained_variance_ratio_,它代表降维后的各主成分的方差值占总方差值的比例,这个比例越大,则越是重要的主成分。